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MOTIVATION: Plasma Confinement Fusion

Primary objective: building a confinement device (e.g. tokamak, stellarator) to
keep a hot plasma confined to a finite volume.

Let T ¢ R3 be adomain with smooth boundary (e.g. diffeomorphic to the solid
torus). The Magnetohydrostatic (MHS) equations in Tread

curlBx B=VP, inT,
V-B=0, inT,
B-n=0, ondT,

where Pis the pressure.

Guiding ideais to use magnetic fields. To leading order, charged particles (ions)
move along field lines.

A basic requirement for confinement is the existence of a flux functiony : T— R
satisfying B- Vi = 0, [Vy| > 0. Provided |V P| > 0 the pressure is always a flux
function.
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Stellarators and Quasisymmetry

Idea of Stellarator (Lyman Spitzer): find equilibria where the geometry is the
source of twisted field lines and not strong plasma current.

Magnetic axis Magnetic field lines

Landreman (2019).

No known examples of such an object which is an MHS equilibrium!
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H. Grad conjectured no smooth equilibria with flux functions exist outside
symmetry.

Conjecture (Grad, 1967): Any non-isolated and smooth equilibrium of un-
forced MHS on a domain T ¢ R? (diffeomorphic to the solid torus) which
has a pressure p possessing nested level sets foliating Tis axisymmetric.

Grad'’s conjecture remains open.
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Let J = curl Band write J = J* + uBwhere J* - B = 0. From MHS we have
JJ_ __ BxVp

R
The function uis determined from

div)=B-Vu+divJ" =0. (1)
which becomes the magnetic differential equation
B-Vu= —(Bx Vp)-V|B| >

The magnetic field Bis tangent to the level sets of . Pick coordinates (6, ¢) on
eachlevel setsothat B- V = 9g + ¢(1) 0. If p = p(¢) then usatisfies an
equation of the form

(96 + 1(1)0) u = (c(1h)0o + d(1)0s) f



Existence outside of symmetry?
Writing u(¥, 0, ¢) = 3, .z Umn (1) €™ 7%, we have
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Existence outside of symmetry?
Writing u(sh, 8, ¢) = 3, ez Umn (1) €™+, we have
(m =+ () ) itmn (1) = (c(t)m + () 1) fnn
If uis smooth and ¢(%)) is nonconstant then the only possibility is that

whenever m + «(1p)n = 0, we have either iim, = 0 or c(¥))m + d(¢)n

=0.
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Existence outside of symmetry?

H. Grad conjectured no smooth equilibria with flux functions exist outside
symmetry.

Conjecture (Grad, 1967): Any non-isolated and smooth equilibrium of un-
forced MHS on a domain T ¢ R? (diffeomorphic to the solid torus) which
has a pressure p possessing nested level sets foliating Tis axisymmetric.

QUESTION: Inwhat sense are fluid solutions rigid (forced to conformto spa-
tial symmetries) or flexible (can be deformed to nearby solutions which break
symmetry). We address these questions first in 2d Euler.
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Rigidity for 2d Euler
Let D ¢ R2. The stationary two dimensional Euler equations read
u-Vu=-Vp, inD,
V-u=0, in D,
u-n=20, ondD.

>

QUESTION: When do solutions conform to symmetries of D?

Fixed boundary analogue of Grad’s conjecture.
Large class of steady states:

Ay = F(v), inD,
1 = (const.), ondD,

The velocity u = V*4 is a solution of the Euler equation withw = curl u = F(4)).
Animportant subclass of solutions are Arnol'd stable. They require either

~M < F(y) <0, or 0<F@®) <

where A1 := A1(D) > 0is the smallest eigenvalue of —Ain D.
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THEOREM: Let (M, g) be a compact two-dimensional Riemannian manifold
with smooth boundary 9M and let & be a Killing field for gtangent to OM. Let
u € C*(M) be an Arnol'd stable state. Then L¢u = 0.

Withu = Véw, differentiate Agy = F(1)) to obtain the equation

(Ac-Fw)Lew =0, inm,
Lep =0, ondM.
Consequences: all Arnol'd stable stationary solutions are
e shears u = v(y2)e,, on the periodic channel
e radial u = v(r)ep on the disk (or annulus)

e non-existent on manifolds without boundary with two transverse Killing fields
e.g. the two-torus or the sphere.

Arnol'd stability is a mechanism for rigidity. Are there others?
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If the domain Dy is a periodic channel

Do ={(y1,y2) Iy1 €T, y2 € [0,1]},

solutions exhibit rigidity without stability

THEOREM: (Hamel & Nadirashvili, 2017) Let Do be a periodic channel and
uo : Do — R? be a C*(Dy) be solution of Euler with infp, uo > 0. Then ug is
ashear, namely uo(y1, y2) = (v(y2), 0) for some scalar function v(yz).

Coti-Zelati, Elgindi, Widmayer (2020) prove similar statement for Poiseuille &
Kolmogorov flows. Gomez-Serrano, Park, Shi, Yao (2020) for signed vorticity.

We generalize N&H theorem to encompass other systems. Proved in two parts.

(a)If ¢ € C' with Ve # 0and g € C' satisfies V1) - Vig = 0, then there exists a
Gsuch that g = G(v)). This shows that any such steady state satisfies some
elliptic problem of the form

A+ fy2)0y,% + gy2, %) + h(p) =0, inDo.

(b) Application of method of moving planes to show that if gy, , f,, > 0, all
solutions of the above satisfy ¥ (y1, y2) = ¥(y2).



Applications to fluid systems (Constantin-Drivas-G.)
Ay — y0'(¥) — G(¥) = 0.

THEOREM: (Boussinesq rigidity) Let Dy be a periodic channel and suppose
that up : Do — R?and  : Dy — R be a C*(Dy) solution with infp, up > 0.
Then there exists Lipschitz ©g s.t. 8o = B0 (o). If furthermore
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This says that in the “stably stratified” regime, all solutions are shear flows.
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then ug is ashear,i.e, uo(y1,y2) = (v(y2), 0) for some scalar function v(y).

This says that in the “stably stratified” regime, all solutions are shear flows.
2

2
Dot o= 20y 4 2p(w) - cCun) =0,

THEOREM: (Axisymmetric Euler rigidity) Let D = {(r,z) € [1/2,1] x T}.
Suppose p, C : R — R are Lipchitz functions and that ¢ : D — Ris C?(D)
solution of the Grad-Shafranov equation with infp V1| > 0. If

P () >0,
theny is radial, i.e. ¥ (r, z) = ¥(r).
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find a solution u = V4 with possibly different vorticity w(®).




Flexibility for 2d Euler

Problem: Given asolution up = V14 of the steady 2D Euler equations

Apo = wo(tbo)

for some vorticity wo := wo (o) on a domain Dy and a “nearby” domain D,
find a solution u = V4 with possibly different vorticity w(1)).

Idea: Seek solution of the form 1) = 1y o y~* for adiffeomorphism~ : Dy — D.

D,
—
~
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Following Vanneste-Wirosoetisno (2005), write y = Id + Vn + V> ¢. The s
determined from fixing p = det V+y constrained to satisfy fDo p = Vol(D):

An=p—1+Ni(0°,0°n).
The other component of the diffeomorphism is fixed by demanding

A = w(),

which, upon substituting 4 = 1 o v~ *, becomes an equation of the form
(A = wh(0)) 216 = pw (W) — wo(¥o) + Na(8*9, %),

where 8, := V1) - V is a derivative along streamlines.

Hypothesis 1 (H1): The following problem admits only the trivial solution.

(A—wé(wo))u:o in Do,
u=20 on 0Dy.

Sufficient condition: Arnol'd stability! i.e. wh > —A1 where A1 > 0is the smallest
eigenvalue of —A in Do with homogeneous boundary conditions.
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Boundary conditions that v : 9Dy — 9D that translate to Dirichlet condition for
vand a Neumann condition for .



Then ~y is found by solving a nonlinear elliptic system for v := 0s¢ and n
An=p—1+Ni(8%¢,0%n),
(A = wh(ho))v = w(tho) — wo(vo) + Na(9%¢,0%n,1 — p),

Boundary conditions that v : 9Dy — 9D that translate to Dirichlet condition for
vand a Neumann condition for .

In order to recover ¢ from v, one uses w. Specifically, inverting A — wg (1),

v= (A - wibwn)) - (w(wo) o) + 1),

Note that if v = 9s¢ for some periodic function ¢ on streamline (dividing by |V1)o|
and integrating in arc-length), then its integral must vanish. We require

Hypothesis 2 (H2): There exists a constant C > 0 such that for all cin the
range of 1o the particle travel time on streamlines is bounded

ds
uc:‘¢ <C c € rang(vo).
( ) (vo=c} |v¢0| ( 0)




Integrating over streamlines, to have v = 0s¢ we must have
0= v = (Kup) () — (K (i — A2) (v, )
%o

where we have introduced Ky, : C<~2%(l) — C**(I) where I = im(t0)

(Kyou)(c) = ﬁ éwo:c} (A — wo (o) ) [u 0 1o] |vw k

We need a hypothesis to choose w := w(to) to make (2) hold true, i.e.

(Kyow)(10) = (Kypo (wo — N2))(¢0)-



Integrating over streamlines, to have v = 0s¢ we must have
0= v = (Kup)(v) — (K (i — A2) (v, )
Jbo

where we have introduced Ky, : C<~2%(l) — C**(I) where I = im(t0)

(K@ 1= g § (B —wbiom), | lwovol i

We need a hypothesis to choose w := w(to) to make (2) hold true, i.e.

(Kyow)(10) = (Kypo (wo — N2))(¢0)-

Hypothesis 3 (H3): Fix k > 2,and let I = im(so). Forany g € C*° (/) such
that g(10(dDo)) = 0, there exists a u € C<~2%(l) such that Ky, u = g
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Hypothesis 3 (H3) follows if we adopt the slightly stronger hypothesis (H1):

Hypothesis 1’ (H1'): The operator (A — w(10)) is positive definite, i.e. ¥
f € Hj(Do) there exists C > 0such that ((A — wj(vo)) f, f) 2 > C||fl[3a.

This holds in the case of the 2d Euler equation if the base state is Arnol'd stable.
The idea behind (H1') == (H3) is that Ky, u := Py (A — wh (o)) e U] where

1 ar _
(Puu() = 15 7%0:4 e fordll ce im(v)

is a projection on L2. Checked by calculation in action-angle coordinates. Then, in
a Hilbert space H, if Pis a projection and A is bounded positive operator then the
compression PAP s positive in PH since

(PAPx, X)n1 = (APx, Px)n > C(Px, PX)p.

A strictly positive bounded operator in L? like (A — wg (1)) ™! remains positive
after compression. Thus the operator PAis invertible from PH — PH.



Theorem (Constantin-Drivas-G.): Let Dy € R? with smooth boundary dDy.
Suppose 1y € Ck"‘(DO) for some a > 0, k > 2 satisfies Ayg = wo(tbo) for
some wy € C<~2%(R). Suppose (H1), (H2) and (H3) and that fDO p = VolD.
Then there are e1, e2 depending only on Do, wo and |[1o|| ke Such that if

H@D = aDQHCk,a(R) <ey,
11 = pll ke (py) < €2,

there is a diffeomorphism v : Dy — D with Jacobian det(Vy) = p, and
afunctionw : R — Rsothaty = thp oy~ > € C*%(D) and ¢ satisfies
A = w(v). Thus, u = V> is an Euler solution in D nearby wo.




Theorem (Constantin-Drivas-G.): Let Dy € R? with smooth boundary dDy.
Suppose 1y € Ck"‘(DO) for some a > 0, k > 2 satisfies Ayg = wo(tbo) for
some wy € C<~2%(R). Suppose (H1), (H2) and (H3) and that fDO p = VolD.
Then there are e1, e2 depending only on Do, wo and |[1o|| ke Such that if

H@D = aDQHCk,a(R) <ey,
11 = pll ke (py) < €2,

there is a diffeomorphism v : Dy — D with Jacobian det(Vy) = p, and
afunctionw : R — Rsothaty = thp oy~ > € C*%(D) and ¢ satisfies
A = w(v). Thus, u = V> is an Euler solution in D nearby wo.

REMARK: (H1') is satisfied and thus so is (H3) for Arnol'd stable solution:
A1 < wpy <0, or 0 < wh < o0.

The condition is open, so are nearby deformations are Arnol'd stable,

Arnol'd stable solutions are non-isolated and structurally stable.
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Return to MHS

Consider again
curlBx B=VP, inT,
V-B=0, inT,
B-n=0, ondT.

In cylindrical coordinates (R, ®, Z), all axisymmetric equilibria with flux functions

take the form 1
B= R (C(¢)Res + Res x V),

where ¢ = ¥(R, Z) satisfies the axisymmetric Grad-Shafranov equation
1 .
Okt + 03 — Ok + RPP (4) + CC (1) = 0, inD,
1 = const. ondD

where D= TN {® = 0}.
Are there any other “symmetric” solutions with flux functions?
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Quasisymmetry

Let & be a non-vanishing vector field tangent to @ T. We say Bis quasisymmet-
ric with respect to & if there is a function ¢ with | V4| > 0 satisfying

divé =0
B x &= Vy
£-V|B=0

The second point implies
B-Viy=¢£-Vp=0
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Quasisymmetry
The constraint
£-V|B=0
has the following consequence. Any quasisymmetric field satisfying MHS has the

form
1

= @ww)uw x ).

The magnetic differential equation is

B

B-Vu=—p/(4)(Bx V¢)-V|B ~
=P () (CW)E = Vo - VIBI> +|Vyl’s VB 7). (3)
For fields of this type this is schematically
Oou~+ t(V)0pu = c()sf,

so Grad’s argument does not rule out these solutions.
Even so, there are no known examples of this type!
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and ¢ - V|BJ* = 0says
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Quasisymmetry
Let m(X,Y) = Vx{ - Y+ V¢ - Xdenote the deformation tensor of &.
From

B= |§|2( CP)E+ Vi x £)

the equation div B = 0 says
C(d})’“—(£~€> + ’/T(E,g X Vl/) = O7
and¢ - V|BJ* = 0says

2 1 “ L
(&, &) + W) 7(€,€ x V) + Wﬁ(fwi.fva)_o,

When ¢ is a Killing field, these are trivial!



To satisfy MHS 1 needs to satisfy the quasisymmetric Grad-Shafranov equation

& X curlg & curl€
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To satisfy MHS 1 needs to satisfy the quasisymmetric Grad-Shafranov equation

% Y+ %qw) +CC' (%) + [¢[*P () = 0.

Itis not clear if this is even consistent with solutions satisfying £ - Vi = 0!

Ay —



Application of the deformation theorem.

Return to magnetohydrostatics & stellarator confinement fusion,

Theorem (Constantin-D.rivas-G) There exist approximate quasisymmetric
MHS solutions with flux functions provided they are sustained by forcing f
with [f] < [€ — &o| where & is the nearest Euclidean Killing field to £ and & is
the symmetry direction.
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Idea of proof:
Choose a metric gfor which a given £ does generate an isometry.
Look for a solution of the form
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Application of the deformation theorem.

Return to magnetohydrostatics & stellarator confinement fusion,

Theorem (Constantin-D.rivas-G) There exist approximate quasisymmetric
MHS solutions with flux functions provided they are sustained by forcing f
with [f] < [€ — &o| where & is the nearest Euclidean Killing field to £ and & is
the symmetry direction.

Idea of proof:
Choose a metric gfor which a given £ does generate an isometry.
Look for a solution of the form

1
= _—_(c V/

Surprisingly
div By = 0, B x & = V1.



Require that B, satisfies the MHS equations with respect to the metric g,
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Require that B, satisfies the MHS equations with respect to the metric g,

B xgcurlg B= —V,P

This gives a two-dimensional Grad-Shafranov equation

o (Ve e b et (£ L CICW) | Pw) _
! (f w) e, e lg<|€\§)+ Viglez Ve

which is consistent with L¢¢ = 0!




Require that B, satisfies the MHS equations with respect to the metric g,

B xgcurlg B= —V,P

This gives a two-dimensional Grad-Shafranov equation

o (Ve e b et (£ L CICW) | Pw) _
! (f w) R () R T i

which is consistent with L¢¢ = 0!

Solve this by deforming a solution to the axisymmetric Grad-Shafranov equations.
The resulting field satisfies the usual MHS equations up an error controlled by
|€ — &ol. Also satisfies the third constraint of quasisymmetry to the same order.



Thanks for your attention!



