
Construction of approximate quasisymmetric
equilibria sustained by a small force

Peter Constantin, Theodore D. Drivas and Daniel Ginsberg
2
Department ofMathematics and
Program in Applied and Computational Mathematics
Princeton University

Simons Hour, April 6 2020



Magnetohydrostatic Equilbria

LetT ⊂ R3 be a domain with smooth boundary (e.g. the infinite cylinder or the
axisymmetric torus). TheMagnetohydrostatic (MHS) equations inT read

J × B = ∇P + f, inT,
∇ · B = 0, inT,
B · n̂ = 0, on ∂T,

where J = ∇× B is the current, f is an external force andP is the ‘plasma
pressure’.

PROGRAM: Identify and construct (smooth)magnetohydrostatic equilibria
which are effective at confining ions during a nuclear fusion reaction.
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Quasisymmetric Equilibrium in Stellarator Geometry

Figure taken from Landreman (2019).



Definitions of Quasisymmetric Equilibria

Definition[Rodríguez, Helander, Bhattacharjee 2020 (preprint)]:
Let ξ be a non-vanishing vector field tangent to ∂T. We say that ξ is a weak
quasisymmetry and the fieldB isweakly quasisymmetric if

div ξ = 0, (1)
ξ × B = −∇ψ, (2)

ξ · ∇|B| = 0, (3)

for some flux functionψ : T → R.

Definition[Burby-Kallinikos-MacKay 2019, Landreman 2019]: Let ξ be a
non-vanishing vector field tangent to ∂T. We say that ξ is a strong quasisym-
metry andB is strongly quasisymmetric if condition (3) is replaced by

ξ × J = ∇(B · ξ), (4)
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Definitions of Quasisymmetric Equilibria
By a result of Burby-Kallinikos-MacKay (2019), in strong quasisymmetryBmust
be of the form

B =
1

|ξ|2
(
C(ψ)ξ + ξ ×∇ψ

)
(5)

for a scalar functionC.

ForB of this form, “weak quasisymmetry” requires only

B ·
(
ξ × J −∇(B · ξ)

)
= 0. (6)

If ξ · ∇ψ = 0 then forB of this form,B · ∇ψ = 0 and particles are confined to
constant–ψ surfaces to zeroth order.

QUESTION: When does the ansatz (5) satisfy (1)–(3) andMHS?
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Quasisymmetric Equilibria
The conditions for quasisymmetry are closely related to deformation tensorLξδ

(Lξδ)(X,Y) = X · (∇ξ + (∇ξ)T) · Y.

Proposition: Let ξ be a non-vanishing and divergence-free, ψ be such that
ξ · ∇ψ = 0 and |∇ψ| > 0, andB be as in (5). Then:
The fieldB is divergence-free if and only if

(Lξδ)(ξ,∇⊥ψ) = −C(ψ)(Lξδ)(ξ, ξ), ∇⊥ = ξ ×∇. (7)

Condition (3) required for weak quasisymmetry is satisfied if and only if

Lξδ(∇ψ,∇ψ) = 0. (8)

Condition (4) required for strong quasisymmetry is satisfied if and only if

(Lξδ)(∇⊥ψ,∇⊥ψ) = C2(ψ)(Lξδ)(ξ, ξ), (9)
(Lξδ)(∇ψ,∇ψ) = −|B|2(Lξδ)(ξ, ξ), (10)

(Lξδ)(∇ψ,∇⊥ψ) = −C(ψ)(Lξδ)(∇ψ, ξ). (11)

If ξ is a Killing field for the Euclideanmetric, thenLξδ ≡ 0 and all the conditions
(7)–(11) are satisfied independent of the nature ofψ andC(ψ).
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QuasisymmetricMHS Equilibria

QUESTION: When does a quasisymmetric ansatz (5) solveMHS?

Proposition: Let ξ be a non-vanishing and divergence-free vector field tan-
gent to ∂T, ψ be such that ξ · ∇ψ = 0 and |∇ψ| > 0, and B be given by (5).
ThenB is aweakly quasisymmetric solution ofMHSwithC = B · ξ constant
on flux surfaces if and only if (7)–(8) hold, and

∆ψ + CC′(ψ)− 1

|ξ|2
[
ξ × curl ξ · ∇ψ − C(ψ)ξ · curl ξ

]
+ |ξ|2P′(ψ)

= C(ψ) (Lξδ)(∇ψ,B)|∇ψ|2 − |ξ|2 f · ∇ψ
|∇ψ|2 ,

−|B|2
|ξ|2 C(ψ)(Lξδ)(ξ, ξ) = f · ∇⊥ψ,

|B|2
|ξ|2 (Lξδ)(ξ, ξ) = f · ξ.
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QUESTION: When does a quasisymmetric ansatz (5) solveMHS?

Proposition:Let ξ be a non-vanishing and divergence-free vector field tan-
gent to ∂T, ψ be such that ξ · ∇ψ = 0 and |∇ψ| > 0, and B be given by (5).
ThenB is a stronglyquasisymmetric solutionofMHSwithC = B ·ξ constant
on flux surfaces if and only if (7)–(8) hold and

∆ψ + CC′(ψ)− 1

|ξ|2
[
ξ × curl ξ · ∇ψ − C(ψ)ξ · curl ξ

]
+ |ξ|2P′(ψ) = |ξ|2 f · ∇ψ

|∇ψ|2 ,

f · ∇⊥ψ = 0,

f · ξ = 0.

This generalized Grad-Shafranov (gGS) equation forψ was derived by
Burby-Kallinikos-MacKay (2019). The condition ξ · ∇ψ = 0 is non-trivial!



Constraints on the deformation tensor with no forcing

Proposition: If ξ is aweakquasisymmetry forB then thedeformation tensor
takes the form

(Lξδ)B =

 0 Lξδ(∇ψ,∇⊥ψ) (Lξδ)(∇̂ψ, ξ̂)
Lξδ(∇ψ,∇⊥ψ) 0 0

(Lξδ)(∇̂ψ, ξ̂) 0 0


B

(12)

where the matrix (Lξδ) is represented in the orthonormal basis B :=

{∇̂ψ, ∇̂⊥ψ, ξ̂}.

If ξ is a strong quasisymmetry for B then the deformation tensor takes the
form

(Lξδ)B = (Lξδ)(∇̂ψ, ξ̂)

 0 − C(ψ)
|∇ψ| 1

− C(ψ)
|∇ψ| 0 0

1 0 0


B

(13)
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QUESTION: Given the many constraints on (ξ,B) (conditions (7)–(11) and
a “ξ-independent” solution of gGS), are there any examples?



Examples of Quasisymmetry: helical symmetry in an infinite
cylinder

Consider the helical vector field defined by

ξ0 = ℓez − mreθ,
whose integral curves generate the infinite cylinder

T0 = {(r, θ, z) ∈ (0, 1]× T× R}.

Then ξ0 is a Killing field so all the conditions for quasisymmetry are satisfied.

The

flux function is determined by the helical Grad-Shafranov

1

r
∂

∂r

(
r

ℓ2 + m2r2
∂

∂rψ
)
+

1

r2
∂2

∂u2
ψ + P′(ψ) +

CC′(ψ)

ℓ2 + m2r2 − 2mℓC(ψ)
(ℓ2 + m2r2)2 = 0,

with helical coordinate u = ℓθ + mz. Since the coefficients of this equation are
independent of v = ℓz − mθ, it admits solutions with ξ0 · ∇ψ = 0.

For any solution of the helical Grad-Shafranov equation,B0 defined by

B0 =
1

|ξ0|2
(
C(ψ)ξ0 + ξ0 ×∇ψ

)
,

is automatically a quasisymmetricMHS equilibrium on the straight cylinderT0.



Examples of Quasisymmetry: helical symmetry in an infinite
cylinder

Consider the helical vector field defined by

ξ0 = ℓez − mreθ,
whose integral curves generate the infinite cylinder

T0 = {(r, θ, z) ∈ (0, 1]× T× R}.

Then ξ0 is a Killing field so all the conditions for quasisymmetry are satisfied. The

flux function is determined by the helical Grad-Shafranov

1

r
∂

∂r

(
r

ℓ2 + m2r2
∂

∂rψ
)
+

1

r2
∂2

∂u2
ψ + P′(ψ) +

CC′(ψ)

ℓ2 + m2r2 − 2mℓC(ψ)
(ℓ2 + m2r2)2 = 0,

with helical coordinate u = ℓθ + mz. Since the coefficients of this equation are
independent of v = ℓz − mθ, it admits solutions with ξ0 · ∇ψ = 0.

For any solution of the helical Grad-Shafranov equation,B0 defined by

B0 =
1

|ξ0|2
(
C(ψ)ξ0 + ξ0 ×∇ψ

)
,

is automatically a quasisymmetricMHS equilibrium on the straight cylinderT0.



Examples of Quasisymmetry: axisymmetry in solid torus

Consider the Killing vector field defined by

ξ0 = Reϕ

whose integral curves are periodic and generate the axisymmetric torus with axis
R = R0,

T0 = {(R,Z, ϕ)|R = R0 + r cos θ,Z = r sin θ, r ∈ [0, 1], θ ∈ [0, 2π], ϕ ∈ [0, 2π]}.

The flux function is determined by the toroidal Grad-Shafranov equation

∂2
r ψ +

1

r2 ∂
2
θψ +

1

r ∂rψ − 1

R

(
cos θ∂rψ − sin θ

r ∂θψ

)
+ R2P′(ψ) + CC′(ψ) = 0,

withR = R0 + r cos θ. Since the coefficients of this equation are independent of
ϕ, it admits solutions with ξ0 · ∇ψ = 0.



Nonexistence outside of symmetry? Grad’s conjecture

Harold Grad (1967) conjectured that there are no examples of smooth steady
states with good confinement properties outside of these explicit examples with
symmetry.

Specifically he said

“no additional exceptions have arisen since 1967, when it was conjectured that
toroidal existence...of smooth solutions with simple nested surfaces admits only these
. . . exceptions. . . . The proper formulation of the nonexistence statement is that, other
than stated symmetric exceptions, there are no families of solutions depending
smoothly on a parameter.” (Grad, 1985)

We formalize a version of this statement as a rigidity property of equilibria

Conjecture (Grad, 1967): Any non-isolated and non-vanishing smoothMHS
equilibriumonadomainT ⊂ R3 (diffeomorphic to the solid cylinderor torus)
which has a pressure p possessing nested level sets which foliate T is either
axially or helically symmetric.

This conjecture remains open. However a natural question is

QUESTION: If one relaxes some of the requirements of quasisymmetry, is
it possible to construct non-symmetric equilibrium states of plasma?
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Main Results: Approximate quasisymmetry on cylindrical domain

Theorem (C-D-G, in prep): There exists ξ onR3 which is close to axisymmet-
ric (i.e. with |ξ − ez| = O(ε) for ε small) whose integral curves are periodic
and generate a domain T close to the straight cylinder, with the property
that there is a vector fieldB : T → R3 solving

J × B = ∇P + f, inT,
∇ · B = 0, inT,
B · n̂ = 0, on ∂T,

with an explicit force f which is O(ε). Moreover, ξ is an approximate qua-
sisymmetry in the sense that

div ξ = 0, inT,
curl(ξ × B) = 0, inT,

ξ × J = ∇(B · ξ) + O(ε), inT,

and there exists a flux functionψ with nested level surfaces such that

B =
1

|ξ|2
(
C(ψ)ξ + ξ ×∇ψ

)
.
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Main Results: Approximate quasisymmetry on a toroidal domain

Theorem (C-D-G, in prep): There exists ξ on R3 which is close to axisym-
metric (i.e. with Lξδ = O(ε) for ε small) whose flow generates a do-
main T close to the axisymmetric torus with large aspect ratio (i.e. with
(min radius)/(max radius) = O(1/R) forR large) such that there is a vector
fieldB : T → R3 solving

J × B = ∇P + f, inT,
∇ · B = 0, inT,
B · n̂ = 0, on ∂T,

with an explicit force f which is O(max{ε, 1/R}). Moreover, ξ is an approxi-
mate quasisymmetry in the sense that

div ξ = 0, inT,
curl(ξ × B) = 0, inT,

ξ × J = ∇(B · ξ) + O(max{ε, 1/R}), inT,

and there exists a flux functionψ with nested level surfaces such that

B =
1

|ξ|2
(
C(ψ)ξ + ξ ×∇ψ

)
.
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Ideas of the proof:

Basic technique due to Vanneste-Wirosoetisno (2005).

Problem: Given a solution u0 = ∇⊥ψ0 of the steady 2D Euler equations
with vorticityω0,

∆ψ0 = ω0(ψ0) (14)
on a domainD0 and a “nearby” domainD, find a solution u = ∇⊥ψ with pos-
sibly different vorticityω(ψ).

Idea: look for a solution of the formψ = ψ0 ◦ γ−1 for a diffeomorphism
γ : D0 → D.
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Ideas of the proof:

Writing γ = Id +∇η +∇⊥ϕ, the requirement that

∆ψ = ω(ψ0), (15)

becomes an equation of the form

∆ϕ = F(∂2ϕ, ∂2η), (16)

The function η is determined from the requirement thatVol(D) = Vol(D0), since

1 = det∇γ = 1 +∆η + G(∂2ϕ, ∂2η). (17)



Ideas of the proof:

Then γ can be found by solving a nonlinear system of elliptic equations

∆ϕ = F(∂2ϕ, ∂2η) (18)
∆η = G(∂2ϕ, ∂2η) (19)

with appropriate boundary conditions.

Observation: Trivial modification to allow forVol(D) ∼ Vol(D0) by picking a
function ρwith

´
D0
ρ = Vol(D) and solving

∆η = 1− ρ+ G(∂2ϕ, ∂2η). (20)
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Ideas of the proof:

Wewill construct a quasisymmetric solution which is nearby an axisymmetric one
as follows.

Step 1: Take an solution defined on the cylinderT0 which is a function only of r,
i.e. ψ0 := ψ0(r), having the property∣∣∣∣C(ψ0)

ψ′
0

∣∣∣∣ ≈ 1

ϵ0
. (21)

Step 2: Let ξ be a vector field with a periodic flowwhich is nearly axisymmetric
and generates a ‘nearby’ non-axisymmetric cylinderT. We require a special
relationship between components of its deformation tensor

|(Lξδ)(ξ, ξ)|
|(Lξδ)(ξ, ξ × er)|

≈ ϵ0 > 0. (22)
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Step 3: Fix coordinates (x1, x2, x3) onR3 so that ξ · ∇ = ∂
∂x3 and a diskD in the

x3 = 0 plane. Wewill construct a solution in the cylinderT generated from the
integral curves of ξ starting fromD.

Step 4: In these coordinates (gGS) takes the form

∆ψ + G(x1, x2, x3, ψ) = 0

for an explicit functionG. Freeze coefficients and write as

∆2dψ + G1(x1, x2, ψ) + Lψ + R(x1, x2, x3, ψ) = 0 (23)

where∆2d is the part of the Laplacian only involving derivatives in the x1, x2
direction, where L = L(∂x3) and the remainderR satisfies

|R| ≲ |Lξδ| = O(ε). (24)
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Step 5: Construct a streamfunctionψ with nested level sets foliating the domain
and enjoying the property that ξ · ∇ψ = 0 (i.e. ψ = ψ(x1, x2) in this coordinate
system), satisfying

∆2dψ + G1(x1, x2, ψ) = 0. (25)
Thisψ nearly satisfies (gGS) in the sense that

|∆ψ + G| = O(ε). (26)

This, and the assumption |ξ − ez| = O(ε), guarantees thatB satisfiesMHSwith
small force f = O(ε).



Ideas of the proof:

Step 5 (cont.):Wedo this by looking forψ of the formψ = ψ0 ◦ γ−1 for a
diffeomorphism γ = Id +∇η +∇⊥ϕ for small η, ϕ to be determined. Such a
solution automatically has nested level sets foliating the cylinder. The
requirement thatψ satisfy (25) becomes a nonlinear elliptic equation for ϕ of the
form

∆ϕ = N(∂2ϕ, ∂2η), (27)
for a given nonlinearityN.

Step 6:Wemust find a solutionψ consistent with div B = 0, i.e. so that

C(ψ)(Lξδ)(ξ, ξ) + (Lξδ)(ξ, ξ ×∇ψ) = 0. (28)

We emphasize that any deviation from (28) holding exactly cannot be
compensated directly by a force as the condition div B = 0 sees the form ofB
alone and can be altered only through changingψ.

A calculation shows that (28) is

C(ψ)(Lξδ)(ξ, ξ) + ψ′
0(det∇γ)−1((Lξδ)(ξ, ξ × er) + (Lξδ)(ξ, ξϕη)

)
(29)

with ξϕη ∼ (∂2ϕ, ∂2η, 0).
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Step 6 (cont.): Therefore div B = 0 provided we can choose γ satisfying

(det∇γ)−1 =
C(ψ0 ◦ γ−1)

ψ′
0 ◦ γ−1

(Lξδ)(ξ, ξ)
(Lξδ)(ξ, ξ × er) + (Lξδ)(ξ, ξϕη)

, (30)

In general we have

∆η = (det∇γ)−1 − 1 + N(∂2η, ∂2ϕ), (31)

and by our assumptions

(det∇γ)−1 − 1 ∼ ϵ0(∂
2ϕ+ ∂2η). (32)

Step 7:We then need to solve a system of the form

∆η = ϵ0(∂
2ϕ+ ∂2η) + F(∂2η, ∂2ϕ), (33)

∆ϕ = F(∂2ϕ, ∂2η). (34)

This can be solved by iteration:

∆ηN+1 = ϵ0(∂
2ϕN + ∂2ηN) + F(∂2ηN, ∂2ϕN), (35)

∆ϕN+1 = F(∂2ϕN, ∂2ηN). (36)
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Some final remarks

• The proof is constructive and provides an algorithmwhich, in principle, can be
used to generate these equilibria on the computer.

• The technique is robust to small perturbations, allowing steady states
occupying a given domain to be deformed to fit nearby ones for a variety of model
equations including 2d Euler, Boussinesq, as well asMHS.
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